\newcommand{\growth}{\color{c1}}
\newcommand{\rotation}{\color{c2}}
\renewcommand{\time}{\color{c3}}
\newcommand{\real}{\color{c4}}
\newcommand{\imaginary}{\color{c5}}
\newcommand{\location}{\color{c6}}
\growth Growth
\plain in a
\rotation perpendicular direction
\plain over
\time time
\
\plain is circular:
\location here are the
\real horizontal
\
\plain and
\imaginary vertical
\plain coordinates
## Read More
- [Intuitive Understanding of Euler's Formula](https://betterexplained.com/articles/intuitive-understanding-of-eulers-formula/)