

Kalid Azad Prof. Michael Littman (MAE)

Problem Description

- Determine position accurately indoors
- Cool because:
 - Unsolved problem!
 - Indoor robots, interactive maps, security
- Hard because:
 - GPS doesn't work indoors
 - Alternatives: Radio, ultrasonic, IR
 - Need cheap alternative (GPS atomic clocks ~ \$100k)
 - Resolution: Better than room level ... 1 foot possible?

A Change of Heart

- After some research, decided:
 - Can use phase differences in sine waves
 - Receiver can solve for position

Things Look Ugly

Unfortunately...

Requires custom hardware

- Which requires a custom OS
- And custom software
- And custom (i.e. no) debugging tools
- A MIT Master's Thesis was on a similar subject
 - Unfortunately, couldn't get everything working

Revelation

- Use existing hardware/software
 - Learned about Microsoft research using wireless networks (thanks to Michael Newman)
 - Can get a cheap wireless card & free software
 - Main idea: measure signal strengths at various locations
 - Create a table
 - Later, someone visits an unknown location
 - They record their current signal strength
 - Find closest match in table

Bumps along the way

- Smaller problems
 - Needed access to device drivers to get signal strengths
 - Luckily, found some utilities
 - Netstumbler, Lucent's tools
 - Log signal strengths to a file
 - Now a matter of text extraction and manipulation
 - Time to learn Perl!
 - Built in hash tables

Bigger, Better, Faster

- Getting signals isn't enough
 - Need quality signals
 - Emphasize positioning, not just data transfer
 - Solution: an antenna
 - Found various "homebrew" antennas on the Web
 - Pringles can, soup can...
 - Work comparably to \$100 commercial ones, cost < \$10

A Little Theory

- EM propagation hard, but main idea:
 - Antenna based on wavelength
 - 2.4 GHz (802.11b) roughly 12cm
 - Manageable size
 - If RF (MHz), could have been tens or hundreds of meters for a "perfect" antenna (i.e., a radio tower)
 - Sine wave peaks at ¼ wavelength (3 cm)
 - Set up a standing wave and tap it at 3 cm.
 - Still don't understand all the details, but have books and learning more =)

How do they do?

- Pringles vs. soup?
 - Both directional antennas
 - "Amplify" signal in some directions, decrease it in others
 - Non-powered components, so can't boost signal

Shaky - what if we average?

- Good idea but...
 - How long will you stay in one place?
 - More than 10-20 seconds unreasonable
 - Enough time to get a decent sample?
- Does the signal vary too much, even for averaging?
 - Let's see...

20 second moving avg.

Signal-to-Noise ratio

Results

Soup is the winner!

- Usually has low range (max-min), highest avg.
 - Also, smaller size
 - Theory: soup is a waveguide, vs. the Pringles Yagi antenna – want to learn why soup wins
- Pringles enhances signal...
 - ...but still shaky over 20 seconds of averaging
 - Sometimes beat the can with std. deviation, but also had larger swings (max – min)
- No antenna
 - Size (or lack thereof) is the sole advantage
 - Also a disadvantage need roughly 6-12cm for an good antenna at 2.4 GHz

My method

Go to a location, log strength for ~30 seconds.

						Latoat
	🛃 ORiNOCO Client N		×			
Į	Network name : Distance between AF	csvapornet Ps : Large				(* AP
	Selection Site Mor	nitor Log Settings	AP names			
	MAC address 💌	SNR(dB)	Noise(dBm) 💌	Signal(dBm) 💌	AP name	•
r	00409640A1A8	38	-94	-56	Unknown	
	004096452485	9	-94	-85	Unknown	
_						

Extract and average data to create a profile for the location

C:\WINNT\System32\cmd.exe

C:\cs398>perl record.pl mylocation Recording mylocation.pos.txt deleting c:/program files/orinoco/client manager/log/monitor.log

C:\cs398>

Log signals, and look it up...

C:\WINNT\System32\cmd.exe	
C:\cs398>perl capture.pl	
distance: 39629.6122 distance: 16.5930	
distance: 2260.7548	
distance: 1974.0220	

----10 Closest Matches---name: mylocation distance: 16.5930 name: noa2 distance: 1974.0220 name: rm104 distance: 2050.5636 name: rm105_b distance: 2073.9012 name: noa1 distance: 2260.7548 name: test distance: 2399.2561 name: noa3 distance: 2443.7092 name: sq1 distance: 2471.7559 name: rm105_a distance: 2473.8280 name: rm101 distance: 2560.6905 deleting c:/program files/orinoco/client manager/log/monitor.log C:\cs398>

A Long Journey...

- But learned a lot along the way
 - Perl for text extraction
 - EM theory & 802.11b
 - Some MySQL to manage database
 - How to quickly devour a can of Pringles to make an antenna
 - Lessons:
 - Cool things can be made from simple components, many of which already exist
 - Don't build everything from scratch
 - You can find anything on the Internet! (drivers, utilities, theory explanations, design specs, hardware)

Conclusions

- Only recently got it working, but...
 - Using the can, can distinguish to about 10 feet confidently
 - CS building has a lot of access points
 - Can resolve to about ~1 meter in the best case
 - Original goal achieved: better than room-level
 - Cheap, efficient, relatively simple, uses existing hardware
 - Need more tests to determine exact resolutions
 - Will most likely be a % error at that resolution
 - New metrics for comparison
 - Weighted avg: weight more for low std. dev.